如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CD

发布时间:2020-08-07 06:02:57

如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B=________度.

网友回答

78
解析分析:在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.

解答:在△ABC中,∠A=30°,则∠B+∠C=150°…①;
根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;
在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:
∠B+∠C=98°…②;
①-②,得:∠B=52°,
解得∠B=78°.

点评:此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!