如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(-4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一

发布时间:2020-08-11 21:07:23

如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(-4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是A.y=-2x+1B.y=-x+2C.y=-3x-2D.y=-x+2

网友回答

D
解析分析:抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.

解答:解:当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示,
∵等腰直角△ABO的O点是坐标原点,A的坐标是(-4,0),
∴AO=4,
∴BC=BE=AE=EO=GF=OA=2,OF=DG=BG=CG=BC=1,DF=DG+GF=3,
∴D坐标为(-1,3);
当C与原点O重合时,D在y轴上,
此时OD=BE=2,即D(0,2),
设所求直线解析式为y=kx+b(k≠0),
将两点坐标代入得:,
解得:.
则这条直线解析式为y=-x+2.
故选D

点评:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!