如图,点A、B是⊙O上两点,AB=8,点P是⊙O上的动点(P与A、B不重合),连接AP、PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF为A.2B.3C.4D.5
网友回答
C
解析分析:先根据垂径定理得出AE=PE,PF=BF,故可得出EF是△APB的中位线,再根据中位线定理即可得出结论.
解答:∵OE⊥AP于E,OF⊥PB于F,AB=8,
∴AE=PE,PF=BF,
∴EF是△APB的中位线,
∴EF=AB=×8=4.
故选C.
点评:本题考查的是垂径定理,熟知垂直于弦的直径平分弦是解答此题的关键.