阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知

发布时间:2020-08-06 17:23:14

阅读下面材料:
小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.
小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.
请你回答:图1中∠APB的度数等于______.
参考小伟同学思考问题的方法,解决下列问题:
(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于______,正方形的边长为______;
(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于______,正六边形的边长为______.

网友回答

解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,
由旋转的性质,P′A=PA=3,P′C=PB=4,∠PAP′=60°,
∴△APP′是等边三角形,
∴PP′=PA=3,∠AP′P=60°,
∵PP′2+P′C2=32+42=25,PC2=52=25,
∴PP′2+P′C2=PC2,
∴∠PP′C=90°,
∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;
故∠APB=∠AP′C=150°;

(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,
由旋转的性质,P′A=PA=2,P′D=PB=1,∠PAP′=90°,
∴△APP′是等腰直角三角形,
∴PP′=PA=×2=4,∠AP′P=45°,
∵PP′2+P′D2=42+12=17,PD2=2=17,
∴PP′2+P′D2=PD2,
∴∠PP′D=90°,
∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,
故,∠APB=∠AP′D=135°,
∵∠APB+∠APP′=135°+45°=180°,
∴点P′、P、B三点共线,
过点A作AE⊥PP′于E,
则AE=PE=PP′=×4=2,
∴BE=PE+PB=2+1=3,
在Rt△ABE中,AB===;

(2)如图4,∵正六边形的内角为×(6-2)?180°120°,
∴把△APB绕点A逆时针旋转120°得到△AFP′,
由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,
∴∠APP′=∠AP′P=(180°-120°)=30°,
过点A作AM⊥PP′于M,设PP′与AF相交于N,
则AM=PA=×2=1,
P′M=PM===,
∴PP′=2PM=2,
∵PP′2+P′F2=(2)2+12=13,PF2=2=13,
∴PP′2+P′F2=PF2,
∴∠PP′F=90°,
∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,
故,∠APB=∠AP′F=120°,
∵P′F=AM=1,
∵△AMN和△FP′N中,

∴△AMN≌△FP′N(AAS),
∴AN=FN,P′N=MN=P′M=,
在Rt△AMN中,AN===,
∴AF=2AN=2×=.
以上问题属网友观点,不代表本站立场,仅供参考!