如图是几组三角形的组合图形,图①中,△AOB∽△DOC;图②中,△ABC∽△ADE;图③中,△ABC∽△ACD;图④中,△ACD∽△CBD.小Q说:图①、②是位似变换

发布时间:2020-08-07 13:41:59

如图是几组三角形的组合图形,图①中,△AOB∽△DOC;图②中,△ABC∽△ADE;图③中,△ABC∽△ACD;图④中,△ACD∽△CBD.
小Q说:图①、②是位似变换,其位似中心分别是O和A.
小R说:图③、④是位似变换,其位似中心是点D.
请你观察一番,评判小Q,小R谁对谁错.

网友回答

解:根据位似图形的定义得出:
小Q对,①,②都可以看成位似变换,位似中心分别为O、A,
③、④虽然都存在相似三角形,但对应顶点的连线不相交于一点,而且对应边也不平行,所以③、④不是位似变换.
解析分析:根据位似图形的定义,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,进而判断得出即可.

点评:此题主要考查了位似图形的性质,注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.
以上问题属网友观点,不代表本站立场,仅供参考!