在?ABCD中,∠A=∠DBC,过点D作DE=DF,且∠EDF=∠ABD,连接EF、EC,N、P分别为EC、BC的中点,连接NP.(1)如图1,若点E在DP上,EF与

发布时间:2020-08-12 05:43:05

在?ABCD中,∠A=∠DBC,过点D作DE=DF,且∠EDF=∠ABD,连接EF、EC,N、P分别为EC、BC的中点,连接NP.
(1)如图1,若点E在DP上,EF与DC交于点M,试探究线段NP与线段NM的数量关系及∠ABD与∠MNP满足的等量关系,请直接写出你的结论;
(2)如图2,若点M在线段EF上,当点M在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M的位置,并证明(1)中的结论.

网友回答

(1)答:NP=MN,∠ABD+∠MNP=180°;
证明:连接CF,
∵四边形ABCD是平行四边形,
∴∠A=∠BCD,AB∥CD,
∴∠ABD=∠BDC,
∵∠A=∠DBC,
∴∠DBC=∠BCD,∠EDF=∠ABD,
∴DB=DC,∠BDC=∠EDF,
∵P是BC的中点,
∴DP⊥BC,∠PDC=∠BDC,
∴∠PDC=∠EDF,
∵DE=DF,
∴DM⊥EF,EM=FM,
∴FC=EC,
∵EN=CN,
∴MN∥FC,MN=FC,
在Rt△ECP中,N是EC的中点,
∴NP=EC,
∴NP=MN;
∵NP=NC=CE,
∴∠NPC=∠NCP,
∴∠ENP=2∠NCP,
∵EC=FC,EM=FM,
∴∠ECF=2∠ECM,
∵MN∥FC,
∴∠ENM=∠ECF=2∠ECM,
∵∠EDF=2∠EDC,
∴∠ABD+∠MNP=∠EDF+∠ENP+∠ENM=2∠EDC+2∠ECP+2∠ECM=2(∠DEC+∠ECP+∠ECM)=2(∠EDC+∠PCD)=2×90°=180°.

(2)答:点M是线段EF的中点.
证明:如图,分别连接BE、CF.
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥DC,∠A=∠DCB,
∴∠ABD=∠BDC.
∵∠A=∠DBC,
∴∠DBC=∠DCB.
∴DB=DC.①
∵∠EDF=∠ABD,
∴∠EDF=∠BDC.
∴∠BDC-∠EDC=∠EDF-∠EDC.
即∠BDE=∠CDF.②
又?DE=DF,③
由①②③得△BDE≌△CDF.
∴EB=FC,∠1=∠2.
∵N、P分别为EC、BC的中点,
∴NP∥EB,NP=.
同理可得?MN∥FC,MN=.
∴NP=NM.
∵NP∥EB,
∴∠NPC=∠4.
∴∠ENP=∠NCP+∠NPC=∠NCP+∠4.
∵MN∥FC,
∴∠MNE=∠FCE=∠3+∠2=∠3+∠1.
∴∠MNP=∠MNE+∠ENP=∠3+∠1+∠NCP+∠4=∠DBC+∠DCB=180°-∠BDC=180°-∠ABD.
∴∠ABD+∠MNP=180°.
解析分析:(1)由在?ABCD中,∠A=∠DBC,易证得△DBC是等腰三角形,又由△DEF是等腰三角形,利用三线合一的知识,可证得CD是EF的垂直平分线,然后由直角三角形的性质与三角形中位线的性质,证得结论;
(2)首先分别连接BE、CF;可证得△BDE≌△CDF,继而利用三角形的内角和定理与三角形的外角的性质,证得结论.

点评:此题考查了平行四边形的性质、全等三角形的判定与性质、直角三角形的性质、等腰三角形的性质以及线段垂直平分线的性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
以上问题属网友观点,不代表本站立场,仅供参考!