已知自然数a,b,c,满足a2+b2+c2+42<4a+4b+12c和a2-a-2>0,则代数式的值是 ________.
网友回答
1
解析分析:解不等式a2-a-2>0得到a>2或a<-1,然后把a2+b2+c2+42<4a+4b+12c用配方法得到(a-2)2+(b-2)2+(c-6)2<2,根据a,b,c是自然数,确定a=3,b=2,c=6,把a,b,c的值代入代数式求出代数式的值.
解答:∵a2-a-2>0,(a-2)(a+1)>0,∴a>2或a<-1.
a2+b2+c2+42-4a-4b-12c<0
配方得:(a-2)2+(b-2)2+(c-6)2<2,
∵a,b,c是自然数,∴a=3,b=2,c=6,
∴++=++=++=1.
故