已知:在△ACB中∠ACB=90°,CD⊥AB于D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,
(1)如图1,AC=BC,点E为AC的中点,求证:EF=EG;
(2)如图2,BE平分∠CBE,AC=2BC,试探究线段EF与EG的数量关系,并证明你的结论.
网友回答
证明:(1)如答图1,过E作EM⊥AB于M,EN⊥CD于N,
∵∠ACB=90°,AC=BC,
∴∠A=∠ABC=45°,
∴AD=CD,
∵点E为AC的中点,CD⊥AB,EN⊥DC,
∴EN=AD,
∴EM=CD,
∴EN=EM,
∵∠FEB=90°,∠MEN=90°,
∴∠NEG=∠FEM,
∴,
∴△EFM≌△EGN,(ASA)
则EF=EG
(2)如答图2,过E作EM⊥AB于M,EN⊥CD于N,
∵∠FEM+∠MEB=90°,∠NEG+∠BEM=90°,
∴∠ENG=∠FEM,
∵∠ENG=∠EMF,
∴△EFM∽△EGN,
则,
又∵BE平分∠ABC,∴CE=EM
∴,
可证,
∴.
解析分析:(1)根据全等三角形的证明方法利用ASA得出△EFM≌△EGN,即可得出EF=EG;
(2)根据已知首先求出∠ENG=∠FEM,再得出∠ENG=∠EMF,即可得出△EFM∽△EGN,再利用相似三角形的性质得出