用两个全等的含30°角的直角三角形制作如图A、B所示的两种卡片,两种卡片中扇形的半径均为2,且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点,按先A后B的顺序交替摆放A、B两种卡片得到如图所示的图案.若摆放这个图案共用两种卡片12张,则这个图案中阴影部分的面积之和为________.
网友回答
6π
解析分析:分别求出A、B两种扇形的面积,再求图形中A、B两种扇形的个数,求阴影部分的面积,注意按先A后B的顺序交替摆放A、B两种卡片.
解答:依题意,A种图中扇形圆心角为60°,半径为2,面积为=,
B种图中扇形圆心角为30°,半径为2,面积为=π.
故图案中阴影部分面积和为6×(+π)=6π.
故