如图,点B,C,E,在同一直线上,点A,D在直线CE同侧,AB=AC,EC=ED,∠BAC=∠CED=60°,AE与BD交于点F,AC与BD交于点M,DC与AE交于N

发布时间:2020-08-09 09:13:16

如图,点B,C,E,在同一直线上,点A,D在直线CE同侧,AB=AC,EC=ED,∠BAC=∠CED=60°,AE与BD交于点F,AC与BD交于点M,DC与AE交于N,则:
(1)△BCD≌△______;
(2)∠AFB=______(度);
(3)△CMD≌△______.

网友回答

证明:(1)∵AB=AC,EC=ED,∠BAC=∠CED=60°,
∴△ABC、△DCE为等边三角形,
∴BC=AC,CD=CE,∠BCD=∠ACE,
∴△BCD≌△ACE;
(2)∵△BCD≌△ACE,
∴∠CBD=∠CAE,
∵∠ABM+∠CBM=60°,
∴∠FAM+∠ABM=60°,
在△ABF中,∠AFB=180°-(∠FAM+∠ABM)-∠BAC,
∴∠AFB=60°;
(3)∵△BCD≌△ACE,∴∠BDC=∠AEC,
∵点B,C,E,在同一直线上,∴∠MCD=60°,
在△CMD和△CNE中,,
∴△CMD≌△CNE.
以上问题属网友观点,不代表本站立场,仅供参考!