设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+…+a99的值为________.

发布时间:2020-07-31 14:33:55

设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+…+a99的值为________.

网友回答

-2

解析分析:欲判x1?x2?…?xn的值,只须求出切线与x轴的交点的横坐标即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.

解答:对y=xn+1(n∈N*)求导得y′=(n+1)xn,令x=1得在点(1,1)处的切线的斜率k=n+1,在点(1,1)处的切线方程为y-1=k(xn-1)=(n+1)(xn-1),不妨设y=0,则x1?x2?x3…?xn=××,从而a1+a2+…+a99=lg(x1?x2?x3…?x99)=lg =-2.故
以上问题属网友观点,不代表本站立场,仅供参考!