已知函数f(x)=x2-2,g(x)=xlnx,,(1)若对一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求实数a的取值范围;(2)试判断方程有几个实根

发布时间:2020-08-07 05:46:53

已知函数f(x)=x2-2,g(x)=xlnx,,
(1)若对一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求实数a的取值范围;
(2)试判断方程有几个实根.

网友回答

解:(1)若对一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,
即2xlnx+x2-ax+3≥0在x∈(0,+∞)恒成立,∴在x∈(0,+∞)恒成立,
令,则,F'(x)=0时x=1,F(x)在(0,1)递减,在(1,+∞)递增,∴Fmin=F(1)=4,∴只需a≤4.
(2)将原方程化为,
令,为偶函数,且G(0)=1,x>0时,

∴G(x)max=+ln2,且x→+∞,y→-∞∴时,无解;或k=1时,三解;,四解;k<1时,两解.
解析分析:(1)若对一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,将g(x)代入化简得2xlnx+x2-ax+3≥0解出a要小于函数的最小值,利用导数讨论函数的增减性得到函数的最小值即可;
(2)将f(x)代入到方程中化简得k等于一个函数,求出函数的导函数=0时的x值,然后讨论函数的增减性得到函数的最大值,然后讨论k的范围决定方程解的个数.

点评:考查学生利用导数求函数极值的能力,理解函数恒成立条件的能力,以及函数与方程的综合运用能力.
以上问题属网友观点,不代表本站立场,仅供参考!