已知x6+4x5+2x4-6x3-3x2+2x+l其中f(x)是x的多项式,则f(x)=________.

发布时间:2020-08-09 07:36:46

已知x6+4x5+2x4-6x3-3x2+2x+l其中f(x)是x的多项式,则f(x)=________.

网友回答

±(x3+2x2-x-1)
解析分析:由于x6+4x5+2x4-6x3-3x2+2x+l=[(x3+2x2)2-(2x4+6x3+4x2)+(x+1)2]=[(x3+2x2)2-2(x3+2x2)(x+1)+(x+1)2]=[(x3+2x2-x-1)2.从而得出f(x)的值.

解答:∵[f(x)]2=x6+4x5+2x4-6x3-3x2+2x+l
=[(x3+2x2)2-(2x4+6x3+4x2)+(x+1)2]
=[(x3+2x2)2-2(x3+2x2)(x+1)+(x+1)2]
=[(x3+2x2-x-1)2.
∴f(x)=±(x3+2x2-x-1).
以上问题属网友观点,不代表本站立场,仅供参考!