如图,已知点A(1,y1)、B(2,y2)是反比例函数y=图象上的两点,动点P(x,0)在x轴的正半轴上运动,当线段AP与线段BP的长度之差达到最大时,点P的坐标是________.
网友回答
(3,0)
解析分析:求出A、B的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.
解答:∵把A(1,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=1,
∴A(1,2),B(2,1),
∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,
∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,
即此时线段AP与线段BP之差达到最大,
设直线AB的解析式是y=kx+b,
把A、B的坐标代入得:,
解得:k=-1,b=3,
∴直线AB的解析式是y=-x+3,
当y=0时,x=3,
即P(3,0).
故