如图,在梯形ABCD中,AD∥BC,∠BAD=90°,对角线BD⊥DC.(1)△ABD与△DCB相似吗?请回答并说明理由;(2)如果AD=4,BC=9,求BD的长.

发布时间:2020-08-08 01:53:42

如图,在梯形ABCD中,AD∥BC,∠BAD=90°,对角线BD⊥DC.
(1)△ABD与△DCB相似吗?请回答并说明理由;
(2)如果AD=4,BC=9,求BD的长.

网友回答

解:(1)△ABD与△DCB相似,理由如下:
∵AD∥BC,
∴∠ADB=∠DBC.
∵BD⊥DC,
∴∠BDC=90°.
∵∠BAD=90°,
∴∠BAD=∠BDC.
∴△ABD∽△DCB.

(2)∵△ABD∽△DCB,
∴=.
∵AD=4,BC=9,
∴BD2=AD?CB.
∴BD=6.
解析分析:(1)由平行线的性质得∠ADB=∠DBC,已知∠BAD=∠BDC=90°,从而可得到△ABD∽△DCB.
(2)根据相似三角形的相似比即可求得BD的长.

点评:此题主要考查学生对相似三角形的判定及性质的理解及运用能力.
以上问题属网友观点,不代表本站立场,仅供参考!