已知函数f(x)=,g(x)=x2-2ax+2,x∈[1,3],对于?m∈R,均能在区间[1,3]内找到两个不同的n,使f(m)=g(n),则实数a的值是______

发布时间:2020-08-07 19:24:11

已知函数f(x)=,g(x)=x2-2ax+2,x∈[1,3],对于?m∈R,均能在区间[1,3]内找到两个不同的n,使f(m)=g(n),则实数a的值是________.

网友回答

2
解析分析:由f(x)==,作出f(x)的图象,由g(x)=x2-2ax+2是开口向上,对称轴为x=a的抛物线,结合题设条件能求出a的值.

解答:解:∵f(x)==,
∴f(x)的图象如图所示:
g(x)=x2-2ax+2是开口向上,对称轴为x=a的抛物线,
∵x∈[1,3],对于?m∈R,均能在区间[1,3]内找到两个不同的n,使f(m)=g(n),
∴对称轴为x=a==2.
所以a=2.
以上问题属网友观点,不代表本站立场,仅供参考!