已知:关于x的方程x2-(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.

发布时间:2020-08-08 12:35:03

已知:关于x的方程x2-(k+1)x+k2+1=0的两根是一个矩形两邻边的长.
(1)k取何值时,方程有两个实数根;
(2)当矩形的对角线长为时,求k的值.

网友回答

解:(1)设方程的两根为x1,x2
则△=[-(k+1)]2-4(k2+1)=2k-3,
∵方程有两个实数根,∴△≥0,
即2k-3≥0,
∴k≥
∴当k≥,方程有两个实数根.

(2)由题意得:,
又∵x12+x22=5,即(x1+x2)2-2x1x2=5,
(k+1)2-2(k2+1)=5,
整理得k2+4k-12=0,
解得k=2或k=-6(舍去),
∴k的值为2.
解析分析:(1)根据一元二次方程根的判别式,方程有两个实数根,则判别式△≥0,得出关于k的不等式,求出k的取值范围.
(2)根据勾股定理和根与系数的关系得出关于k的方程,求出k的值并检验.

点评:解决本题的关键是利用一元二次方程根与系数的关系和勾股定理,把问题转化为解方程求得k的值.
以上问题属网友观点,不代表本站立场,仅供参考!