如图,在矩形ABCD中,AB=5,BC=4,将矩形ABCD翻折,使得点B落在CD边上的点E处,折痕AF交BC于点F,求FC的长.

发布时间:2020-08-10 18:02:31

如图,在矩形ABCD中,AB=5,BC=4,将矩形ABCD翻折,使得点B落在CD边上的点E处,折痕AF交BC于点F,求FC的长.

网友回答

解:由题意,得AE=AB=5,AD=BC=4,EF=BF,
在Rt△ADE中,由勾股定理,得DE=3.
在矩形ABCD中,DC=AB=5.
∴CE=DC-DE=2.
设FC=x,则EF=4-x.
在Rt△CEF中,x2+22=(4-x)2.
解得.
即FC=.
解析分析:根据翻转前后,图形的对应边和对应角相等,可知EF=BF,AB=AE,故可求出DE的长,然后设出FC的长,则EF=4-FC,再根据勾股定理的知识,即可求出
以上问题属网友观点,不代表本站立场,仅供参考!