已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F

发布时间:2020-08-07 12:50:10

已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F,
(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想AE,CF,EF之间存在怎样的数量关系?请将三条线段分别填入后面横线中:______+______=______(不需证明)
(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上问的结论分别是否仍然成立?若成立,请给出证明;若不成立,那么这三条线段又有怎样的数量关系?请写出你的猜想,不需证明.

网友回答

(1)解:如图1,AE+CF=EF,
理由:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,
在△ABE和△CBF中,

∴△ABE≌△CBF(SAS);
∴∠ABE=∠CBF,BE=BF;
∵∠ABC=120°,∠MBN=60°,
∴∠ABE=∠CBF=30°,
∴AE=BE,CF=BF;
∵∠MBN=60°,BE=BF,
∴△BEF为等边三角形;
∴AE+CF=BE+BF=BE=EF;
以上问题属网友观点,不代表本站立场,仅供参考!