机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方

发布时间:2020-08-07 12:49:44

机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.
(1)求弦BC的长;(2)求圆O的半径长.
(本题参考数据:sin67.4°=,cos67.4°=,tan67.4°=)

网友回答

解:(1)连接OB,过点O作OD⊥AB,
∵AB∥SN,∠AON=67.4°,
∴∠A=67.4°.
∴OD=AO?sin 67.4°=13×=12.
又∵BE=OD,
∴BE=12.
根据垂径定理,BC=2×12=24(米).

(2)∵AD=AO?cos 67.4°=13×=5,
∴OD==12,
BD=AB-AD=14-5=9.
∴BO==15.
故圆O的半径长15米.
解析分析:(1)过O作OD⊥AB于D,则∠AOB=90°-67.4°=22.6°.在Rt△AOD中,利用∠AOB的三角函数值即可求出OD,AD的长;
(2)求出BD的长,根据勾股定理即可求出BO的长.

点评:(1)将解直角三角形和勾股定理的应用相结合,求出BE,再根据垂径定理求出BC的长即可,有一定的综合性;
(2)利用(1)的结论,再根据勾股定理,即可求出半径.
以上问题属网友观点,不代表本站立场,仅供参考!