关于x的一元二次方程x2-2x-m=0
①已知1+是方程的一个根,求它的另一根及m的值
②判断命题:“若m≤2,则方程x2-2x-m=0总有两个不相等的实数根”的真假,如果是真命题请给出证明;如果是假命题请举出一个反例说明
网友回答
解:①设方程的另一个根为x1,则:
x1+1+=2,
∴x1=1-.
x1?(1+)=-m,
(1-)(1+)=-2=-m,
∴m=2.
故另一个根是:1-,m=2.
②△=4+4m>0,
m>-1.
∴当m>-1时,方程总有两个不等实数根.
故命题“若m≤2,则方程x2-2x-m=0总有两个不相等的实数根”是假命题.
如当m=-2时,方程为x2-2x+2=0,此时△=4-8=-4<0,方程没有实数根.
解析分析:①由两根之和可以求出方程的另一个根,由两根之积可以求出m的值.②用一元二次方程根的判别式证明命题的真假,然后用具体的数字说明.
点评:本题考查的是一元二次方程根与系数的关系和根的判别式,①由两根之和可以求出方程的另一个根,两根之积可以求出m的值.②用判别式可以求出方程有两个不相等的实数根时m的取值范围,可以证明命题是假命题,然后用具体的数字说明.