如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)(提示:平面图形的性质通常从它的边、内角、对角

发布时间:2020-08-09 01:51:37

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

网友回答

解:(1)∵AC与BD互相垂直平分于点O,
设AC=2a,BD=2b,
∴Rt△AOD中,AO=a,DO=b,
Rt△AOB中,AO=a,BO=b,
Rt△COD中,CO=a,DO=b,
Rt△COB中,CO=a,BO=b,
据勾股定理可得:AD=AB=BC=CD=,
即:该四边形四边相等.

(2)由(1)可知:AD=AB=BC=CD,
∴可得CABCD=4AB,
即:该四边形的周长为边长四倍.

(3)由(1)可知;AD=AB=BC=CD,
∴∠ADO=∠ABO,∠CDO=∠CBO,
∴∠ADC=∠ABC,
同理:∠DAB=∠DCB;
即:该四边形的对角相等.

(4)由(1)可知:S△AOD=S△AOE=S△COE=S△COD=ab,
且AC=2a,BD=2b,
∴S四边形ABCD=ab×4=2ab.
即:该四边形的面积等于对角线乘积的一半.
解析分析:由四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,由勾股定理即可求得AB=BC=CD=AD,即可求得此四边形的周长,对角相等,以及此四边形的面积等于对角线乘积的一半.

点评:此题考查了菱形的性质.此题难度适中,注意掌握数形结合思想的应用.
以上问题属网友观点,不代表本站立场,仅供参考!