如图a,∠EBF=90°,请按下列要求准确画图:1:在射线BE、BF上分别取点A、C,使BC<AB<2BC,连接AC得直角△ABC;2:在AB边上取一点M,使AM=B

发布时间:2020-08-05 04:59:21

如图a,∠EBF=90°,请按下列要求准确画图:
1:在射线BE、BF上分别取点A、C,使BC<AB<2BC,连接AC得直角△ABC;
2:在AB边上取一点M,使AM=BC,在射线CB边上取一点N,使CN=BM,直线AN、CM相交于点P.
(1)请用量角器度量∠APM的度数为______;(精确到1°)
(2)请用说理的方法求出∠APM的度数;
(3)若将①中的条件“BC<AB<2BC”改为“AB>2BC”,其他条件不变,你能自己在图b中画出图形,求出∠APM的度数吗?

网友回答

解:(1)45°.

(2)过点A作AK⊥AB,且AK=CN,连接CK、MK,
∴四边形ANCK是平行四边形.
∵CN=MB,∴AK=MB,
∵AM=CB,∠B=∠KAM,
∴△AKM≌△BMC.
∴∠AKM=∠BMC,KM=MC.
∵∠AKM+∠AMK=90°,
∴∠BMC+∠AMK=90°.
∴∠KMC=90°.
∴△KMC是等腰直角三角形.
∴∠MCK=45°.
∵CK∥AN,
∴∠APM=∠MCK=45°.

(3)过点A作AK⊥AB,且AK=CN,连接CK、MK.
∴四边形ANCK是平行四边形.
∵CN=MB,∴AK=MB,
∵AM=CB,∠B=∠KAM,
∴△AKM≌△BMC.
∴∠AKM=∠BMC,KM=MC.
∵∠AKM+∠AMK=90°,
∴∠BMC+∠AMK=90°.
∴∠KMC=90°.
∴△KMC是等腰直角三角形.
∴∠MCK=45°.
∵CK∥AN,
∴∠APM+∠MCK=180°.
∴∠APM=135°.
解析分析:(1)用量角器量即可.
(2)根据题意画出图形,过点A作AK⊥AB,且AK=CN,连接CK、MK,求证△KMC是等腰直角三角形即可.
(3)过点A作AK⊥AB,且AK=CN,连接CK、MK,则同(1)可证出△KMC是等腰直角三角形,∠MCK=45°,由CK∥AN可知∠APM+∠MCK=180°,故∠APM=135°.

点评:本题很复杂,解答此题的关键是根据题意画出图形,作出辅助线,根据平行线的性质,全等三角形及直角三角形的判定定理解答.是中学阶段的重点.
以上问题属网友观点,不代表本站立场,仅供参考!