设x,y∈(0,2],已知xy=2,且6-2x-y≥a(2-x)(4-y)恒成立,那么实数a的取值范围是________.

发布时间:2020-08-10 16:05:50

设x,y∈(0,2],已知xy=2,且6-2x-y≥a(2-x)(4-y)恒成立,那么实数a的取值范围是________.

网友回答

(-∞,1]
解析分析:先换元,令2x+y=t并求出它的取值范围,然后利用分离法将参数a分离出来,求不等式另一侧的最值即可.

解答:令2x+y=t,则t∈[4,5]
∵6-2x-y≥a(2-x)(4-y)
∴6-t≥a(10-2t)即a≤
∴a≤()min=1
以上问题属网友观点,不代表本站立场,仅供参考!