解方程:①(x-2)2=25②2x2-3x-4=0③x2-(+)x+=0④x2-2ax+a2=0?(a为常数)

发布时间:2020-08-06 13:55:02

解方程:
①(x-2)2=25
②2x2-3x-4=0
③x2-(+)x+=0
④x2-2ax+a2=0?(a为常数)

网友回答

解:①(x-2)2=25,
开方得:x-2=5或x-2=-5,
解得:x1=7,x2=-3;
②2x2-3x-4=0,
这里a=2,b=-3,c=-4,
∵△=9+32=41,
∴x=,
则x1=,x2=;
③x2-(+)x+=0,
分解因式得:(x-)(x-)=0,
解得:x1=,x2=;
④x2-2ax+a2=0,
分解因式得:(x-a)2=0,
解得:x1=x2=a.
解析分析:①利用平方根定义开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;
②找出a,b及c的值,计算出根的判别式的值大于0,代入求根公式即可求出解;
③利用十字相乘法将方程左边多项式分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;
④利用完全平方公式将方程左边多项式分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.

点评:此题考查了解一元二次方程-因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
以上问题属网友观点,不代表本站立场,仅供参考!