如图,DE是ABC的中位线,F是DE的中点,CF的延长线交AB于点G,则AG:GD等于________.
网友回答
2:1
解析分析:过点E作EH∥AD交CG于点H,根据F是DE的中点,利用平行线分线段成比例定理可以得到EH=GD,再根据DE是△ABC的中位线,得到EH是△ACG的中位线,求出EH与AG的比值,从而AG:GD也可求出.
解答:解:如图,点E作EH∥AD交CG于点H,
∵F是DE的中点,
∴DF=EF,
∴==1,
∴EH=GD,
∵DE是ABC的中位线,
∴点E是AC的中点,
又EH∥AD,
EH是△ACG的中位线,
∴EH:AG=1:2,
∴AG:GD=AG:EH=2:1.
故