已知如图,D为等边三角形ABC内一点,DB=DA,BF=AB,∠1=∠2,则∠BFD=________.
网友回答
30°
解析分析:连接DC,根据等边三角形性质得出AB=AC=BC,∠ACB=60°,推出BF=BC,证△ADC≌△BDC,求出∠ACD=∠BCD=∠ACB=30°,证△FBD≌△CBD,推出∠BFD=∠BCD即可.
解答:
连接DC,
∵△ABC是等边三角形,
∴∠ACB=60°,AC=BC=AB,
∵BF=AB,
∴BF=BC,
∵在△ADC和△BDC中
∴△ADC≌△BDC,
∴∠ACD=∠BCD=∠ACB=×60°=30°,
在△FBD和△CBD中
∴△FBD≌△CBD,
∴∠BFD=∠BCD=30°,
故