在△ABC中,AB=AC,∠BAC=90°,D是BC边上一点.(1)若D是BC边的中点,如图1,则AD2+BD?CD与BC2的大小关系是______(直接填空,不必证

发布时间:2020-08-08 03:04:16

在△ABC中,AB=AC,∠BAC=90°,D是BC边上一点.
(1)若D是BC边的中点,如图1,则AD2+BD?CD与BC2的大小关系是______(直接填空,不必证明)
(2)如图2,若D是△ABC中BC边上任意一点,则(1)中的结论还成立吗?请证明你的结论.

网友回答

解:(1)AD2+BD?CD与BC2的大小关系是AD2+BD?CD=BC2;

(2)过A作AM⊥BC于M,

∵AB=AC,∠BAC=90°,
∴∠B=45°,BM=CM=AM,
设BM=CM=AM=a,
则AD2+BD?CD=AM2+MD2+(BM+MD)?(CM-MD)=AM2+MD2+BM2-MD2=AM2+BM2=2a2,
而BC2=(2a)2=4a2,
∴AD2+BD?CD=BC2.
解析分析:(1)根据题给条件可知:BD=CD=AD=BC,继而即可得出AD2+BD?CD与BC2的大小关系;
(2)过A作AM⊥BC于M,AB=AC,∠BAC=90°,可知BM=CM=AM,并设其长为a,则AD2+BD?CD=AM2+MD2+(BM+MD)?(CM-MD)=AM2+MD2+BM2-MD2=AM2+BM2=2a2,而BC2=(2a)2=4a2,继而即可得出结论.

点评:本题考查勾股定理的知识,第二问的解题关键是利用勾股定理将AD2化为AM2+MD2,难度一般.
以上问题属网友观点,不代表本站立场,仅供参考!