如图,四边形ABCD中,AD∥BC,AD=15,BC=25,AB=DC=10,动点P从点D出发,以每秒1个单位长的速度沿线段DA的方向向点A运动,动点Q从点C出发,以每秒2个单位长的速度沿射线CB的方向运动,点P、Q分别从点D、C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).
(1)当t=2时,求△APQ的面积;
(2)若四边形ABQP为平行四边形,求运动时间t;
(3)当t为何值时,以A、P、Q三点为顶点的三角形是等腰三角形?
网友回答
解:(1)过A作AE⊥BC于E,
∵AB=DC,AD∥BC,
∴四边形ABCD是等腰梯形,
又∵AB=DC=10,AD=15,BC=25,
∴BE=(BC-AD)=5,在RT△ABE中,AE==5,
当t=2时,AP=AD-t=13,
∴△APQ的面积=AP×AE=.
(2)∵四边形ABQP为平行四边形,
∴AP=BQ,即AD-t=BC-2t,
∴15-t=25-2t,
解得:t=10秒.
(3)由题意可知:AP=15-t,
AQ=;
PQ=;
①当AP=AQ时,t不存在;
②当AP=PQ时,t=;
③当AQ=PQ时,t1=15(舍去),t2=;
综上可知,当t=或t=时,以A、P、Q三点为顶点的三角形是等腰三角形.
解析分析:(1)过A作AE⊥BC于E,先求出等腰梯形的高AE,当t=2时可求出AP的长,进而可求出△APQ的面积.
(2)如果四边形ABQP为平行四边形则可得出AP=BQ,从而可列出关于t的方程,解出即可得出t的值.
(3)将AP、AQ、PQ分别用t表示出来,然后讨论,①AP=AQ,②AP=PQ,③AQ=PQ,分别解出t的值即可得出