如图,在△ABC中,AD是高线,点M在AD上,且∠BAD=∠DCM,求证:CM⊥AB.

发布时间:2020-08-06 02:51:22

如图,在△ABC中,AD是高线,点M在AD上,且∠BAD=∠DCM,求证:CM⊥AB.

网友回答

证明:延长CM交AB于点N.
∵在△ABC中,AD是高线,
∴∠ADC=90°,
在△AMN和△CDM中,∠BAD=∠DCM,∠AMN=∠CMD,
根据三角形内角和定理得到:∠ANM=∠ADC=90°,
∴CM⊥AB.
解析分析:要证明CM⊥AB,只要延长CM交AB于点N,证出∠ANM=90°即可.

点评:证明垂直的方法一般是根据垂直的定义,转化为证直角的问题.
以上问题属网友观点,不代表本站立场,仅供参考!