已知函数f(x)是定义在R上的奇函数,且对任意x∈R有f(x)=f(2-x)成立,则f(2010)的值为________.
网友回答
0
解析分析:由函数f(x)是定义在R上的奇函数,且对任意x∈R有f(x)=f(2-x)成立,我们不难得到函数f(x)是一个周期函数,而且我们可以求出它的最小正周期T,根据周期函数的性质,我们易求出f(2010)的值.
解答:∵对任意x∈R有f(x)=f(2-x)成立
∴函数f(x)的图象关于直线x=1对称
又∵函数f(x)是定义在R上的奇函数
∴函数f(x)是一个周期函数
且T=4
故f(2010)=f(0)
又∵定义在R上的奇函数其图象必过原点
∴f(2010)=0
故