填空,完成下列证明过程.如图,△ABC中,∠B=∠C,D,E,F分别在AB,BC,AC上,且BD=CE,∠DEF=∠B,求证:ED=EF.证明:∵∠DEC=∠B+∠B

发布时间:2020-08-05 04:40:10

填空,完成下列证明过程.
如图,△ABC中,∠B=∠C,D,E,F分别在AB,BC,AC上,且BD=CE,∠DEF=∠B,
求证:ED=EF.
证明:∵∠DEC=∠B+∠BDE(________),
又∵∠DEF=∠B(已知),
∴∠________=∠________(等式性质).
在△EBD与△FCE中,
∠________=∠________(已证),
________=________(已知),
∠B=∠C(已知),
∴△EBD≌△FCE(ASA).
∴ED=EF(全等三角形的对应边相等).

网友回答

三角形的一个外角等于与它不相邻两个内角的和    BDE    CEF    BDE    CEF    BD    CE
解析分析:证明ED=EF可以转化为证明△EBD≌△FCE,证这两个三角形相等已具备的条件是:∠B=∠C,BD=CE,这样就可以转化为证明:∠BDE=∠CEF.

解答:∵∠DEC=∠B+∠BDE(三角形的一个外角等于与它不相邻两个内角的和),
又∵∠DEF=∠B(已知),
∴∠BDE=∠CEF(等式性质).
在△EBD与△FCE中,
∠BDE=∠CEF(已证),
BD=CE(已知),
∠B=∠C(已知),
∴△EBD≌△FCE(ASA).
∴ED=EF(全等三角形的对应边相等).

点评:考查了三角形的外角性质和全等三角形的判定与性质,解决这类填空题的关键是理解题目证明的依据,证明时需要用的条件.
以上问题属网友观点,不代表本站立场,仅供参考!