将圆x2+y2+2x-2y=0按向量平移得到⊙O,直线l与⊙O相交于A、B两点,若在⊙O上存在点C,使.求直线l的方程.

发布时间:2020-08-01 05:42:21

将圆x2+y2+2x-2y=0按向量平移得到⊙O,直线l与⊙O相交于A、B两点,若在⊙O上存在点C,使.求直线l的方程.

网友回答

解:将圆的方程x2+y2+2x-2y=0化为(x+1)2+(y-1)2=2,
∴圆x2+y2+2x-2y=0按向量 平移后得到圆x2+y2=2,
∵,又 ,
∴AB⊥OC,,
∴直线l的斜率 k=1,设直线l的方程为 y=x+m,
由 得 2x2+2mx+m2-2=0,△=4m2-8(m2-2)>0,
设A(x1,y1),B(x2,y2),则 x1+x2=-m,y1+y2=m
∴,∵点 C(m,-m)在圆上,
∴m2+(-m)2=2
解得m=±1,满足△=4m2-8(m2-2)>0,
当 m=1时,l的方程为x-y+1=0,
当 m=-1时,l的方程为x-y-1=0.

解析分析:先求出平移后的圆的方程,设出直线的方程,并把它代入圆的方程利用一元二次方程根与系数的关系,求出点C的坐标的解析式,把点C的坐标代入圆的方程,可解得m值.

点评:本题考查向量在几何中的应用,直线和圆相交的性质,一元二次方程根与系数的关系,体现了数形结合的数学思想,属中档题.
以上问题属网友观点,不代表本站立场,仅供参考!