如图,?ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为A.36°B.46°C.27°D.63°

发布时间:2020-08-05 19:32:56

如图,?ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为A.36°B.46°C.27°D.63°

网友回答

A
解析分析:根据BE是直径可得∠BAE=90°,然后在?ABCD中∠ADC=54°,可得∠B=54°,继而可求得∠AEB的度数.

解答:∵四边形ABCD是平行四边形,∠ADC=54°,
∴∠B=∠ADC=54°,
∵BE为⊙O的直径,
∴∠BAE=90°,
∴∠AEB=90°-∠B=90°-54°=36°.
故选A.

点评:本题考查了圆周角定理及平行四边形的性质,解答本题的关键是根据平行四边形的性质得出∠B=∠ADC.
以上问题属网友观点,不代表本站立场,仅供参考!