已知sinα>sinβ,那么下列命题成立的是
A.若α、β是第一象限角,则cosα>cosβ
B.若α、β是第二象限角,则tanα>tanβ
C.若α、β是第三象限角,则cosα>cosβ
D.若α、β是第四象限角,则tanα>tanβ
网友回答
D解析分析:由于题中条件没有给出角度的范围,不妨均假定0≤α,β≤2π,结合三角函数的单调性加以解决.解答:若α、β同属于第一象限,则,cosα<cosβ;故A错.第二象限,则,tanα<tanβ;故B错.第三象限,则,cosα<cosβ;故C错.第四象限,则,tanα>tanβ.(均假定0≤α,β≤2π.)故D正确.答选为D.点评:本题考查三角函数的性质,三角函数的性质是三角部分的核心,主要指:函数的定义域、值域,函数的单调性、对称性、奇偶性和周期性.