如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.

发布时间:2020-08-06 06:01:05

如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.
(1)求∠ABD的度数;
(2)求线段BE的长.

网友回答

解:(1)在菱形ABCD中,AB=AD,∠A=60°,
∴△ABD为等边三角形,
∴∠ABD=60°;

(2)由(1)可知BD=AB=4,
又∵O为BD的中点,
∴OB=2,
又∵OE⊥AB,及∠ABD=60°,
∴∠BOE=30°,
∴BE=1.

解析分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;
(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.

点评:本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.
以上问题属网友观点,不代表本站立场,仅供参考!