△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是A.120°B.125°C.135°D.150°
网友回答
C解析分析:本题求的是∠AIB的度数,而题目却没有明确告诉任何角的度数,因此要从隐含条件入手;CD是AB边上的高,则∠ADC=90°,那么∠BAC+∠ACD=90°;I是△ACD的内心,则AI、CI分别是∠DAC和∠DCA的角平分线,即∠IAC+∠ICA=45°,由此可求得∠AIC的度数;再根据∠AIB和∠AIC的关系,得出∠AIB.解答:解:如图.∵CD为AB边上的高,∴∠ADC=90°,∴∠BAC+∠ACD=90°;又∵I为△ACD的内切圆圆心,∴AI、CI分别是∠BAC和∠ACD的角平分线,∴∠IAC+∠ICA=45°,∴∠AIC=135°;又∵AB=AC,∠BAI=∠CAI,AI=AI;∴△AIB≌△AIC(SAS),∴∠AIB=∠AIC=135°.故选C.点评:本题主要考查等腰三角形的性质、三角形内切圆的意义、三角形内角和定理、直角三角形的性质;难点在于根据题意画图,由于没任何角的度数,需要充分挖掘隐含条件.此类题学生丢分率较高,需注意.