如图,设M是△ABC的重心,且AM=3,BM=4,CM=5,则△ABC的面积为________.
网友回答
18
解析分析:先作辅助线,延长BM交AC于点D,再延长BD至E,使DE=DM,据已知条件易证得△AMD≌△CDE,据各边的关系可证得△CME为直角三角形,由△ABC的面积=3△CME的面积即可得解.
解答:解:延长BM交AC于点D,再延长BD至E,使DE=DM,连接CE,
∵M是△ABC的重心,
∴AD=CD,MD=BM,
∵∠ADM=∠CDE(对顶角相等),DE=DM,
∴△AMD≌△CDE(SAS),
∴AM=EC=3,
∵DE=DM,MD=BM,
∴BM=EM=4,
在△CME中,CM=5,ME=4,EC=3,根据勾股定理可得△CME为直角三角形,
S△CME=×3×4=6,
由以上可证得S△AMC=S△CME
∵M是△ABC的重心,
∴S△ABC=3S△AMC=18.
故