如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A?B?C?D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示,请回答下列问题:
(1)点P在AB上运动的速度为______,在CD上运动的速度为______;
(2)求出点P在CD上时S与t的函数关系式;
(3)t为何值时,△APD的面积为10cm2?
网友回答
解:(1)点P在AB上运动的速度为=1cm/s,在CD上运动的速度为=2cm/s;
(2)PD=6-2(t-12)=30-2t,
S=AD?PD=×6×(30-2t)=90-6t;
(3)当0≤t≤6时,S=3t,
△APD的面积为10cm2,即S=10时,
3t=10,t=,
当12≤t≤15时,90-6t=10,t=,
所以当t为(s)、(s)时,△APD的面积为10cm2.
解析分析:(1)直接根据函数图象上坐标可求出点P在AB上运动的速度为=1cm/s,在CD上运动的速度为=2cm/s;
(2)用t表示PD=6-2(t-12)=30-2t,代入面积公式可求S=90-6t;
(3)通过图象可知,△APD的面积为10cm2.即S=10,分别在S=3t和S=90-6t,上代入即可求得t=,t=.
点评:主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.