已知函数f(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,求实数m的取值范围.

发布时间:2020-08-09 08:00:02

已知函数f(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,求实数m的取值范围.

网友回答

解:当m=0时,f(x)=2x2+4x+4,g(x)=0,
∵f(x)=2(x+1)2+2>0,∴m=0符合题意.
若m<0,在x<0时,g(x)>0,在x≥0时,g(x)≤0,
∴需要f(x)=2x2+(4-m)x+4-m>0在[0,+∞)上恒成立.
∵,∴f(0)=4-m>0,∴m<4,∴m<0符合题意.
若m>0,在x>0时,g(x)>0,在x≤0时,g(x)≤0,
∴需要f(x)=2x2+(4-m)x+4-m>0在(-∞,0]上恒成立.
∴或,
综上可知m<4.
解析分析:不论m为何值,对于任一实数x,f(x)与g(x)的值至少有一个为正数,所以对m分类讨论,即m=0、m<0、m>0 讨论f(x)与g(x)的值的正负,求出满足题意的m的值.

点评:本题考查一元二次方程的根的分布与系数的关系,考查分类讨论思想,转化思想,是中档题.
以上问题属网友观点,不代表本站立场,仅供参考!