已知∠AOB=45°,其内部一点P,OP=10,在∠AOB的边OA、OB上分别有点Q、R(P、Q、R三点不在同一直线上,Q、R不同于点O),则△PQR周长的最小值为_

发布时间:2020-08-09 17:52:50

已知∠AOB=45°,其内部一点P,OP=10,在∠AOB的边OA、OB上分别有点Q、R(P、Q、R三点不在同一直线上,Q、R不同于点O),则△PQR周长的最小值为________.

网友回答

10
解析分析:设点P关于OA的对称点是E,关于OB的对称点是F,当点R、Q在EF上时,△PQR的周长=PQ+QR+PR=EF,此时周长最小.

解答:解:如图,作出点P关于OA的对称点E,作出点P关于OB的对称点F,连接EF,交OA于Q,交OB于R.连接PQ,PR,PE,PF,OE,OF.
则PQ=EQ,PR=RF,
则△PQR的周长=PQ+QR+PR=EQ+QR+RF=EF.
∵∠AOP=∠AOE,∠POB=∠FOB,∠AOB=∠AOP+∠POB=45°,
∴∠EOF=90°,
又∵OE=OP,OF=OP,
∴OE=OF=10,即△EOF是等腰直角三角形,
∴EF=OP=10.
∴△PQR的周长的最小值为10.
以上问题属网友观点,不代表本站立场,仅供参考!