如图,在△CAB和△EAD中,∠CAE=∠BAD,BC=DE.(1)请你选择以下条件:①AB=AD;②∠C=∠E;③∠B=∠D;④∠CAB=∠EAD中的一个条件,使得

发布时间:2020-08-09 14:29:21

如图,在△CAB和△EAD中,∠CAE=∠BAD,BC=DE.
(1)请你选择以下条件:①AB=AD;②∠C=∠E;③∠B=∠D;④∠CAB=∠EAD中的一个条件,使得△CAB≌△EAD,并说明理由.(只要选一种即可)
(2)在(1)的前提下,若AB=,BC=2x-y+7,AC=(y-6)2,AD=,DE=,AE=4,请解决以下问题:
①分别求出x,y的值;
②化简:.
(n为正整数)

网友回答

解:(1)可以选择②∠C=∠E或③∠B=∠D,中的一种.
∵在△CAB和△EAD中,∠CAE=∠BAD,BC=DE,
∴∠CAB=∠EAD,
又∵∠C=∠E,
∴△CAB≌△EAD(利用“AAS”)

(2)①由(1)得AB=AD,=,
解得x=4,
经检验x=4是原方程的根,所以x=4;
或(BC=DE)2x-y+7=解得x=4;
或(AC=AE)由(y-6)2=4,解得y=8或4;
当x=4,y=8时,AB=AD=6,BC=DE=7,AC=AE=4;
当x=4,y=4时,AB=AD=6,BC=DE=11,AC=AE=4,此时三角形不能构成,因此不合题意.
所以x=4,y=8.
②当x=4,y=8时,原式=,
=[+++…+]
=(1-+-+-+…+-)
=(1-)=.
解析分析:(1)可以选择②,然后根据已知条件求出∠CAB=∠EAD,再利用AAS定理从而证得△CAB≌△EAD;
(2)根据①可得AB=AD,即=,然后解出x的值,利用此方法依次求出BC=DE或AC=AE,从而解出x的值,再由三角形三边关系判断是否合题意,最后得出正确
以上问题属网友观点,不代表本站立场,仅供参考!