△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC-AC).

发布时间:2020-08-09 04:25:37

△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC-AC).

网友回答

解:延长AD交BC于F,说明AC=CF,DE是△ABF的中位线.
∵CD平分∠ACB,AD⊥CD,
∴∠ACD=∠BCD,CD是公共边,∠ADC=∠FDC=90°,
∴△ADC≌△FDC(ASA)
∴AC=CF,AD=FD
又∵△ABC中E是AB的中点,
∴DE是△ABF的中位线,
∴DE=BF=(BC-CF)=(BC-AC).
解析分析:延长AD交BC于F,证明AC=CF,DE是△ABF的中位线,即可求证.

点评:此题主要考查三角形的中位线定理,综合利用了三角形全等的知识,证出DE是△ABF的中位线是关键.
以上问题属网友观点,不代表本站立场,仅供参考!