如图,在直角坐标系中,点A的坐标为(-2,0),点B的坐标为(1,-),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式

发布时间:2020-08-06 05:17:18

如图,在直角坐标系中,点A的坐标为(-2,0),点B的坐标为(1,-),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).
(1)求抛物线的解析式;
(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)

网友回答

解:(1)将A(-2,0),B(1,-),O(0,0)三点的坐标代入y=ax2+bx+c(a≠0),
可得:,
解得:,
故所求抛物线解析式为y=-x2-x;

(2)存在.理由如下:
如答图①所示,
∵y=-x2-x=-(x+1)2+,
∴抛物线的对称轴为x=-1.
∵点C在对称轴x=-1上,△BOC的周长=OB+BC+CO;
∵OB=2,要使△BOC的周长最小,必须BC+CO最小,
∵点O与点A关于直线x=-1对称,有CO=CA,
△BOC的周长=OB+BC+CO=OB+BC+CA,
∴当A、C、B三点共线,即点C为直线AB与抛物线对称轴的交点时,BC+CA最小,此时△BOC的周长最小.
设直线AB的解析式为y=kx+t,则有:
,解得:,
∴直线AB的解析式为y=-x-,
当x=-1时,y=-,
∴所求点C的坐标为(-1,-);

(3)设P(x,y)(-2<x<0,y<0),
则y=-x2-x? ①
如答图②所示,过点P作PQ⊥y轴于点Q,PG⊥x轴于点G,过点A作AF⊥PQ轴于点F,过点B作BE⊥PQ轴于点E,则PQ=-x,PG=-y,
由题意可得:S△PAB=S梯形AFEB-S△AFP-S△BEP
=(AF+BE)?FE-AF?FP-PE?BE
=(y++y)(1+2)-y?(2+x)-(1-x)(+y)
=y+x+? ②
将①代入②得:S△PAB=(-x2-x)+x+
=-x2-x+
=-(x+)2+
∴当x=-时,△PAB的面积最大,最大值为,
此时y=-×+×=,
∴点P的坐标为(-,).

解析分析:(1)直接将A、O、B三点坐标代入抛物线解析式的一般式,可求解析式;
(2)因为点A,O关于对称轴对称,连接AB交对称轴于C点,C点即为所求,求直线AB的解析式,再根据C点的横坐标值,求纵坐标;
(3)设P(x,y)(-2<x<0,y<0),用割补法可表示△PAB的面积,根据面积表达式再求取最大值时,x的值.

点评:本题考查了坐标系中点的坐标求法,抛物线解析式的求法,根据对称性求线段和最小的问题,也考查了在坐标系里表示面积及求面积最大值等问题;解答本题(3)也可以将直线AB向下平移至与抛物线相切的位置,联立此时的直线解析式与抛物线解析式,可求唯一交点P的坐标.
以上问题属网友观点,不代表本站立场,仅供参考!