?某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…5004

发布时间:2020-08-07 06:00:20

?某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

网友回答

解:(1)由图可猜想y与x是一次函数关系,
设这个一次函数为y=kx+b(k≠0),
∵这个一次函数的图象经过(30,500)、(40,400)这两点,
∴,
解得:,
∴函数关系式是:y=-10x+800.

(2)设工艺厂试销该工艺品每天获得的利润是W元,
依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000
当x=50时,W有最大值9000.
所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.

(3)函数?W=-10(x-50)2+9000的对称轴为x=50
故当x≤45时,W的值随着x值的增大而增大,当x=45时利润最大,最大利润为8750元.
∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润为8750元.
解析分析:(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;
(2)利润=销售总价-成本总价=单件利润×销售量.据此得表达式,运用性质求最值;
(3)根据自变量的取值范围结合函数的取值范围内的增减性,可得出函数的最值.

点评:此题主要考查了二次函数的应用,根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.
以上问题属网友观点,不代表本站立场,仅供参考!