如图,在梯形ABCD中,AD=DC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,则AC=________,梯形ABCD的面积为______

发布时间:2020-08-08 11:01:55

如图,在梯形ABCD中,AD=DC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,则AC=________,梯形ABCD的面积为________.

网友回答

    
解析分析:由已知可得梯形ABCD是等腰梯形,根据等腰梯形的性质及已知可求得AB的长,从而不难求得AC的长,再过点A作AE⊥BC于点E,从而可求得AE的长,根据梯形面积公式不难求得其面积.

解答:解:∵在梯形ABCD中,AB=DC
∴梯形ABCD是等腰梯形
∴∠D+∠DCB=180°
∵∠D=120°
∴∠B=∠DCB=60°
∵对角线CA平分∠BCD
∴∠ACB=30°
∵AD=DC
∴∠DAC=∠ACD=30°
∴∠BAC=90°
∴BC=2AB
∵梯形的周长=AD+DC+BC+AB=5AB=20
∴AB=4
∴AC=4,BC=8
过点A作AE⊥BC于点E
∵AB=4,AC=4,BC=8
∴AE=2
∴梯形ABCD的面积=(4+8)×2×=12.
以上问题属网友观点,不代表本站立场,仅供参考!