如图,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=________.

发布时间:2020-08-07 02:31:40

如图,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=________.

网友回答


解析分析:连接EF,则可证明△EA'F≌△EDF,从而根据BF=BA'+A'F,得出BF的长,在Rt△BCF中,利用勾股定理可求出BC,即得AD的长度.

解答:连接EF,

∵点E、点F是AD、DC的中点,
∴AE=ED,CD=DF=CD=AB=,
由折叠的性质可得AE=A'E,
∴A'E=DE,
在Rt△EA'F和Rt△EDF中,
∵,
∴Rt△EA'F≌Rt△EDF(HL),
∴A'F=DF=,
BF=BA'+A'F=AB+DF=1+=,
在Rt△BCF中,BC==.
∴AD=BC=.
以上问题属网友观点,不代表本站立场,仅供参考!