如图,在直角梯形ABCD中,AB∥DC,∠B=90°.E是BC上的一点,连结AE、DE,且△ADE≌△ECD.(1)求证:△AED是等腰直角三角形;(2)若△AED的

发布时间:2020-08-07 10:27:11

如图,在直角梯形ABCD中,AB∥DC,∠B=90°.E是BC上的一点,连结AE、DE,且△ADE≌△ECD.
(1)求证:△AED是等腰直角三角形;
(2)若△AED的面积是,直角梯形ABCD的面积是,求△ABE的周长.

网友回答

(1)证明:∵△ABE≌△ECD,
∴AE=DE,
∴∠BAE=∠DEC,∠AEB=∠EDC,
∵∠AEB+∠BAE=90°,
∴∠AEB+∠DEC=90°,
∴∠AED=90°,
∴△AED是等腰直角三角形;

(2)解:∵△AED是等腰直角三角形,
∴S△AED=AE2,
∴=AE2,
∴AE=5,
∵△ABE≌△ECD,△AED的面积是,直角梯形ABCD的面积是,
∴2S△ABE=SABCD-S△AED,
∴S△ABE==6,
即AB?BE=6,
则2AB?BE=24,
∵(AB+BE)2=AB2+2AB?BE+BE2=AB2+BE2+2AB?BE=AE2+24=25+24=49,
∴AB+BE=7,
∴△ABE的周长是=7+5=12.
解析分析:(1)等腰直角三角形的判定问题,先求出两边相等,再求一直角即可;
(2)有三角形△AED的面积,直角梯形ABCD的面积,求出△ABE,在直角三角形中,运用勾股定理求出各边长.

点评:考查了等腰三角形的性质及判定,能够运用勾股定理求解一些简单的面积问题.
以上问题属网友观点,不代表本站立场,仅供参考!