已知:如图,AB为半圆O的直径,C、D是半圆上的两点,E是AB上除O外的一点,AC与DE交于点F.①;②DE⊥AB;③AF=DF.请你写出以①、②、③中的任意两个条件

发布时间:2020-08-09 09:40:33

已知:如图,AB为半圆O的直径,C、D是半圆上的两点,E是AB上除O外的一点,AC与DE交于点F.①;②DE⊥AB;③AF=DF.请你写出以①、②、③中的任意两个条件,推出第三个(结论)的一个正确命题.并加以证明.

网友回答

解:如果①、②为条件,③作为结论,组成的命题为真命题,
理由如下:
证明:连接AD、BD,

∵,
∴∠DAC=∠B,
又AB为直径,DE⊥AB,
∴∠ADB=∠AED=90°,
∴∠DAE+∠ADE=90°,∠DAE+∠B=90°,
∴∠ADE=∠B,
∴∠DAC=∠ADE,
∴AF=DF.
解析分析:假如①和②作为条件,③作为结论组成一个命题为真命题,理由为:连接AD,BD,由两弧相等,根据等弧所对的圆周角相等得到∠DAC=∠B,又AB为圆O的直径,根据直径所对的圆周角为直角,且DE与AB垂直,从而得到三角形ABD与三角形AED都是直角三角形,根据直角三角形的锐角互余,得到∠DAE与∠ADE及∠B都互余,根据等角的余角相等得到∴∠ADE=∠B,等量代换得到∠DAC=∠ADE,再利用等角对等边得到DF=AF,得证.


点评:此题考查了圆周角定理,以及等腰三角形的判定,利用了转化的思想,属于开放型题,
以上问题属网友观点,不代表本站立场,仅供参考!