已知函数f(x)=x2-alnx在(1,2]是增函数,在(0,1)为减函数.
(1)求f(x)、g(x)的表达式;
(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解.
网友回答
解:(I),依题意f'(x)≥0,x∈(1,2],即a≤2x2,x∈(1,2].
∵上式恒成立,∴a≤2.①
又,依题意g'(x)≤0,x∈(0,1),即,x∈(0,1).
∵上式恒成立,∴a≥2.②
由①②得a=2
∴
(II)由(I)可知,方程f(x)=g(x)+2,
设,
令h'(x)>0,并由x>0,得,解知x>1
令h'(x)<0,由x>0,解得0<x<1
列表分析:
知h(x)在x=1处有一个最小值0
当x>0且x≠1时,h(x)>0,
∴h(x)=0在(0,+∝)上只有一个解.
即当x>0时,方程f(x)=g(x)+2有唯一解
解析分析:(1)已知函数f(x)在(1,2]是增函数,g(x)在在(0,1)为减函数.则在(1,2]上f'(x)≥0恒成立,在(0,1)上g(x)≤0恒成立.
(2)由(1)不难给出方程f(x)=g(x)+2,然后构造函数,利用函数的单调性证明方程解的唯一性.
点评:利用导数研究函数的单调性比用函数单调性的定义要方便,但应注意f′(x)>0(或f′(x)<0)仅是f(x)在某个区间上为增函数(或减函数)的充分条件,在(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件应是f′(x)≥0[或f′(x)≤0],x∈(a,b)恒成立,且f′(x)在(a,b)的任意子区间内都不恒等于0,这就是说,函数f(x)在区间上的增减性并不排斥在区间内个别点处有f′(x0)=0,甚至可以在无穷多个点处f′(x0)=0,只要这样的点不能充满所给区间的任何一个子区间,因此,在已知函数f(x)是增函数(或减函数)求参数的取值范围时,应令f′(x)≥0[或f′(x)≤0]恒成立,解出参数的取值范围(一般可用不等式恒成立理论求解),然后检验参数的取值能否使f′(x)恒等于0,若能恒等于0,则参数的这个值应舍去,若f′(x)不恒为0,则由f′(x)≥0[或f′(x)≤0]恒成立解出的参数的取值范围确定.